

（
 （ans
 促
 促
 促

FREEHAND DRAWING FROM FLAT COPIES.

GENERAL DIRECTIONS FOR TEACHER AND PUPIL.

FOR THE TEACHER.

I. You will usually find it best to take personal charge, between lessons, of the drawing-books, pencils, and rubbers. Do not consume, at a lesson, more than one minute in their distribution or collection.
II. Before the class begin to draw any copy which their books contain, require them to look at it carefully while you give the directions, as set forth in the Manual, for drawing it. Have them repeat the directions until you are certain they understand the different steps to be taken. Occasionally require the class, before drawing a form, to analyze it, as described in the Mannal.
III. Sce that the whole class work together, as a rule, doing the same thing at the same time. By the aid of the blackboard you can keep all together. But do not spend at the blackboard, on an average, more than one tenth of the time devoted to the lesson Give the other nine tenths to indivirlual instruction.
IV. See that the learner always draws, First, with understanding; Secord, with rapidity; Third, with as much precision as rapid drawing will admit. Do not make fine finish the leading leature; at least, do not sacrifice to this either knowledge or celerity of execution.
V. Blackboard, dictation, and memory lessons, with original design, are leading features in this course of drawing. It is for these that the blank pages are inserted. For specific directions see the Manual.

FOR THE PURIL.

To insure accuracy and to avoid loss of time, proceed thus with each exercise : First, draw the construction or guide lines, which are usually dotted in the printed copy; Second, sketch the longer lines of the form, or object, and then the shorter ones; Third, line in, that is, finish, the complete form.

The First Stage.
Drawing the Guioe Lines. - To secure a correct final result you must both accurately place a nd accurately divide these lines. Do not dot them as in the printed copies, but make them continuous and faint. Do not attermpt to draw the form without these lines.

The Second Stage.
SKETGHiNG THE FORM. - After the guide lines have been drawn, sketch the form ; that is, draw it in light linc, the lighter the better, in order that errors may be easily corrected. Turo the book for the detection of errors. The Third Stage.
Lining in. - Erase the guide lines, and all other lines and parts of lines which are not to appear in the finished drawing ; partly crase the sketch of the form, as it is to appear when lined in, making the lines just visible ; clean the paper. The work is now ready for finishing or lining in. The pencil should have a sharp point ; and it should be held more acarly upright than in sketching, that the side of the pencil may not touch the paper. Make a firm, bold line, and of the same thickness throughout, unless there is a difference in the copy. Qeneral Remarks.
POSITION OF BOOK. - Place the book so that you çan most ersily draw the exerclse or any part of it. The following will be found the best general rules: for Stage I keep the book square wlth the edges of the desk, that the horizontal and vertical Unes may be the move accirately drawn. For Stages 2 and 3 keep the book as far as possible in the same position as in Stage x . By turning the hand and pencil you will frequently avoid the necessity of turning the book.
DRAWING CURVES, - For a long, flat curve, make the wrist the centre from which the curve is struck draw short, round curves with the fingers alone. Sce that the curve, when you are drawing it, is concave towards the fingers; if it is convex towards the fingers, then turn the book.
PENCIL, RUBBER, ETC. - Kecp your pencil point in good condition by rubbing it sidewise on a piece of paper. Do not wet the point, lest it make lines too black and diffienlt to crase. Do not hold the rubber in the hand while you are using the pencil، lest it become moist. Use the rubber sparingly in Stages I and 2 . Before beginning Stage 3 you may use it frecly, for your drawing should not be spoiled by imperfectly erased faults Do not measure the drawing without permission of the teacher. Work rapidly, yet always avoid the haste that is heedless. Be patient, industrions, eareful, persevering, and you will certainly succeed.

PRINCIPLES OF DESIGN ILLUSTRATED IN THIS BOOK.

I beatty resulting from subtlety.

1. A subtle proportion is more pleasing than a simple proportion. Thus the proportion 2 to 3 is more pleasing than the proportion I to 2 ; and 3 to 5 is more pleasing than 2 to 3 . It is more difficult for the eye to detect a subtle proportion thas a sintple one. Both the ornament and the form of the object should have a distinct proportion.
2. A subtle curve is more pleasing than a simple curve. Thus an elliptical curve is more beautiful than a circular curve. The character of the latter is more readily detected by the eye. If the two segments of a reversed curve are parts of a circle, the curve is less beautiful tian one whose chaoge of direction is gradual and not all at one point.
3. A tangential union of curves, or of curves and straight lines, is more pleasing than a secant, abrupt union. In the former case one lime blends insensibly into the other; but in the latter case the junction is strongly marked. For agreeable effect there must be no abrupt change in the direction of a line.

II BEAUTY RESULIING FROM ORDERLY ARRANGEMENT.

1. Orderly arrangement is secured by symmetrical repetition about a centre, as of a circle, a triangle, a square, a pentagon, This form of repctition requires that all parts of the figure having the same relation to the centre sh - ld be treated exactly alike. Thus there can be mo lue without its companions; no superfluous line, as there would be in a disorderly arrangement.
2. Orderly arrangement is secured by symmetrical repetition on an axis. This form of repetiton requires that there be a perfect balance of parts, that the right-hand side of the figure correspond exactly to the left-hand. A violation of this law of ornament produces always a disagreeable effect.
3. Orderly arrangement is secured by a regular repetition of the symmetrical unit, or repeat. This repetition may be made horizontally or vertically, as in the case of mouldings on a wall : or it may be made in all directions as in a design for a carpet or for the decoration of a ceiling. This orderly repetition of an ornameot usually gives an increase of beauty, while a disorderly arrangement would be exceedingly disagreeable.

III. ADAPTATION OF THE DESIGN TO POSITION.

1. When a design is to be viewed from all sides, as an ornament on a ceiling or a carpet pattern, it should be so constructed that it will always be seen right way up. With symmetrical arrangement about a centre this always happens.
2. When a design is to be viewed from only one side, as in the case of an ornament on the wall of a room, it will be scen right way up, whether the arrangement be around a centre or on an axis, provided the axis is vertical. This position of the axis must be maintained, whether the unit is repeated up and down or right and lelt.

IV. ADAPTATION OF THE DESIGN TO MLATERIAL AND USE.

x. Due regard must always be paid to the material of which the ohject is to be made, or to which the ornament is to be applied. A design for an obect to be made of metal will not necessarily answer for a similar object to be made of clay. If ac ornament is to be cut in granite, for example, the lines must be few ; if en graved on silver, the ornament may be elaborate.
2. The use to which an object is to be put must be first considered in determining its form. To this form the decoration, if there is any, must be adapted. It should also be in harmony with the use. The form of an object is not to be adapted to its decoration.

Nearly all the designs in this book are geometrical, being combinations of straiglit and curved lines without an attempt to represent objects, natural or artificial. A few are outline desirns for vases, pitchers, and the like. There are no conventional forms. The Manual gives full explanation of the principles, and it is expected that the teacher will explain them to his pupils as thcy advance with the drawings. When they have concluded the book, they should be able to give an account of these prineiples and to illustrate them with original designs.

Turn your hand and your pencil as much and as often as you desire while drawing the lines on this page

BORDERS AND MOULDINGS, TO BE COMPLETED. HORIZONTAL EEPETITION.

10. - 2lgzag.

11. - Greek Fret.

12. - Isosceles Triangles, aliernately reversed.

13. - Toy Hozse, end elevation, to be enlarged.

14

14. - Toy House, side elevation, to be enlarged.

By practice, make yourself able to draw and define, without hesitation, all the forms on this page.

23. - Circular Curves.

24. - Circular Curve日, Interlacing.

25. - Flower Formg, alternately reversed.

As a rule, draw the longest lines of a figure first. Thus, in the last figure above, draw the cootinuous wave-curve, which extends from left to right, before drawing any of the shorter curves.

Observe how the handle is joined to the body of the pitcher. Draw an object correctly, though rouglily, so far as you attemyt to draw it at all. Make each curve as graceful as passible.

DEFINITIONS.

Before the pupii lays aside this book he should have a clear understanding of the definitions which follow. They should be learned and frequently reviewed in

 connection with the drawing-lessons. The Manual contains much more relating to the same.1. A POLNT is posltion only ; therefnere it has no lenith, breacth, or thickness.

NOTE- In drawing, a point is represented by a dot, which has size.
15. A LINE has length, hut no breadeh or thickness.

NOTE. - In ilraving, a line is represented by a pencil-mark, which has breadth.

1. Lines named from their appearance are straight, curved, or broken; continuous or discontinuous.
a. A Siraght line has the sane hection throughout its whole length.
b. A Curand Lime constanly churnes its durecton: it hats no three consecmive points in a straight
c. A lirutien lifhe consists of a scrics of straight lines united one to the cond of another, but having
differeht elirections
d. A cumtamums hane is an uninterruptel line: it may be either straight or curved.

8 fralght Lines named from their position are horizontal, vertical, or oblique.
NOTE. - The absalute position of a line is determined by its relation to the centre of the earth. in drawing, however, the surface on which the line is drawn is also taken into consideritiun. The surface is usually regardud as an upright plane; and the defmitions here given conform to this view.
a. A Thrizontat line is a straight line which inclines neither up nor down.
b. A terifas Line is a straight line which extends up and slown and does not incline in any direction. An Obbque Line is a straight line which inctines inore or less.

NOTF. The driwing hook mast be regarded as in a vertical position, like the blackboard edge of the book; a vertical line, the same direction as the riglit-hand edge; and a straighe line drawn in any other direction is oblique.
3. Llaes named from thelr reintion to one another are perpendicular, oblique, or parallel.
a. A Perpendicuther line. One straiglat line is said to be perpendicular to another straight line, when Ne7e when we simbly
bot when we say that if is porpendicular to another line it moy be verical, horizont is verical ; If its position is considered.
b. An Dibloue Line. One straight line is said to be oblique to another straight line, when the two do
c. Parallet Lines. Two lines, straight or curved, are said to be parallel when they lie side by side and lave the same direction throughout their whole length. knows nothing of up and down, of right and left.
111. Surface. Space enclosed by lines is called surface; it has, therefore, length and breadth, bu: no
thickness.
3. A Plane. Surface to all parts of which a rule can be exactly applied, is called a plane.
2. Gurved Surface. When a shrface curves like the outside of a cup, it is called convex; when it curves like the inside of a cup, it is called concave.
IV. A s0LID. Space encinsed by surfaces is called a solid; a solid has lengtls, breadth, and thickness. NOTE-Thus wo have, ${ }^{3}$, n point, - no dimension: 2 . A line, - one dimension; 3 . a surface,
V. An ANGLE is the difference in direction of twa straight lines which meet or only tend towards each other. Note. - The word angle, is often applied to the point where the lines met, - the vertex of
the ancle. the angle.
8. Different Angles. When two straight lines cross each other so as to form four equal anmles, as a yertieal and a horizontal line woukl, ench is called a right angle. An acute angle is smaller than a riglat agle ; an obtuse angle is inger than a rieht angle.
in their direction.
V1. A TRIANOLE. Any planc surface or figure bounded by three straight lines, or sides, is ealled a triangle.

1. Differeat Trlangles. A riphe Triangle contains a riplit angle. An Fquitateral Triangle has three
equal sides. An isoscrics Triancle has two of its sites equal. A Scatene Triangie has no two of equal sides. An /soscricr Triancle has two of its sides equal. A Scalene Triangle has no two of
2. Similar and Equal Triangles. Two triandes, or any two plane figures, are sald to be simltas, when
they have the salle shopre ; equal, when they have the salne area or surfare.
 eitch other without cltange of position. An isobceles triangle has one axis of syntuctry; an equilut.
VII. A QUADRILATERAL. Any plane surface or figure bounded by four straight sides is called a quadrilateral. 3. A Square has four equal straight sides and four equal angles.
a. A Dianteter of a Sgrare is a straight line drawa through the centre of the square, paraliel to two of its sides.
b. A Diarounar
3. Otber Quadrlaterals. A Rhombus has four cqual sides, but unequal angles. An OMfoni las four
equal anyles, but only its opposite sides are equal. A Kitomboud lias only opj osste sides and opposite angles cyual.

NOTt. - When a quadrilateral has, four right angles, it is sonnetimes called a Recrangle: when
it has its opposite sides parallet is is snumetines called a Parate
VIII. A POLYGON. Any plane figure boumled by more than four straighe sides, and having more than four POLYGON. Any plane figure boumled by more than four straing
angles, is called a polygon, which means having nany angles.

NOTE, - If the sides and angles are equal, the figure Is called a regutar polygon ; if they are unequal, then it is called an irregular polygon. l'ulygons lave dulferent mames, as jemtagon, hexason, cte.

1. A Regular Pentagon has five equal straight sides and five equal angles.
2. A Regular Hexagon has six equal straight sides and six equal angles.
3. A Regular Oetagon has eiglt equat straight sides and cight equal anjles.
ular Octagon has chyt quat straight sides and eight equal angles.
NOTB. The regular pentagon has five axcs of symuetry; the regular hexagon, six; the
regular octagon, eight.
IX. CURVED LINES and CURVED FIGURES. A line which constantly changes its direction, and has no three consecutive points in the same straight line, is called a curve; and any fogure bounded by such
x. Circular Carve and Circumference. A circular curve Is drawn in one plane and bends equally in all
4. A Circle is a plane figure bounded by a curve, called the circutuference, all parts of which are at the same distance from a point within, called the cemre.

NOTE. The word circle is frequently used to denote the circumference as well as the space
enclosed it. The patius or a
a. The Radius of a Circle ls a straight line drawn from the centre to the circumference.
b. The Diameter of a Circle is a straight line drawo through the centre and touching the circum.
c. OTHER FARTS OF A CIRCLR A Sector is the space Included between any part of the circumference and two radii of a circle. A Quadrant is the space included between a quarter of the
circunference and two radio of a circle. An Arc is any part of the circunference of a circle. circumference and two ratif of a circle. An Arc is any part of the circumference of a circle.
A Chord is a straight line connecting the two ends of an arc. A Sgment is the space included
d. The weent ande of a Curve is the perpendicular distance from its base, or chord, to the highest point in the curve.
3. An Ellipse is a plane figure bounded by a curve, every point of which ts at the same combiocd dislil foci.
NOTE - The ellipse is often incorrectly called an oval. In commoo usage the word ellipse is applied both to the figure and to the curve.
4. An Oval is a plane figure bounded by a curve having the slape of an egg viewed sldewise.

Note. - An oval has one axis of symmetry, its long diameter. An ellipse has swo axes of symmetry, its long and short dann
divides it into two semleircles.
5. A Reversed Curve is a curve that reverses its direction : it really consists of two curves.
6. Abstrant Curves are curves so connbined that they represent nothing created, natural or artificial, A plane Spiral is a curved line produced lyy tre revolution of one por

NOTE, - Curves which have clearly defined and conbtant features, like the circle, ellipse, and spirat, are called not such features, are sometimes called hand-curves.

A SYSTEM OF. INDUSTRIAL AND ARTISTIC DRAWING FOR PUBLIC SCHOOLS

PREPARED BY PROF. WALTER SMITH,

State Director of Art Education for Massachusetts, General Supervisor of Drawing in the Boston Public Schools, and Director of the Massachusetts Normal Art School.

THis is the only comprehensive system of instruction in drawing available for American schools. The instruction is so graded as to meet the wants of every grade of pupils, from the lowest primary class to the most advanced class of the high school. The system comprises

A Primary, Course,
 A Grammar Course,
 An Intermediate Course, A High School Course.

THE PRIMARY COURSE.

This coursc consists of a Manual for the use of teachers, in which the simple elements of the study are explained and illustrated by the most familiar terms and examples; and two series of Cards, containing exercises for pupils to draw on their slates. It explains and illustrates the simpler principles of both geometrical and conventional design.

Price of the Manuat, $\$ 1.00$; of the Cards, 15 cents each set.

THE INTERMEDIATE COURSE.

This course consists of three small Drawing-Books, of twenty pages each, specially arranged for pupils when they begin to draw on paper. The exercises illustrate principles of Design and Style, and drawing from Models and Objects.

This course also contains a Manual for Teachers.
Price of the Manual, $\$ \mathrm{I} .25$; of the Drawing-Books, 15 cents each.

THE GRAMMAR COURSE.

This course consists of:-
First. Four Books in Freehand Outline Drawing from Flat Copies, and Design. The exercises are more advanced than those in the Intermediate Course; and by a wide variety of conventional, and natural forms, and representations of historical ornament, pupils are taught a great deal about the decorative art of past ages, and also about the general principles of good Design and the special features of the Classic Styles.
Second. Four Books in Geometrical Drawing, with Instruments. These books form the basis for Perspective, Model and Ohject, and Mechanical

Drawing. The exercises consist of problems in Plane Geometry, the working of which teaches pupils the exact meaning of words and terms. By the care required to execute the problems they are trained to accuracy of workmanship. Third. Two Books in Model and Object Drawing, Freehand. The exercises in these books are all in outline; and pupils are taught in a thorough manner how to draw from objects. The exercises in these as in all the other books are of such a character, that the pupil's taste will be cultivated while he is acquiring skill in drawing.
Fourth. Two Books in Perspective Drawing, with Instruments. These books teach thoroughly the elements of Parallel and Angular Perspective.
This course is accompanied by a Manual for Teachers, containing all the exercises in the books, and many more besides, with a full explanation of methods and principles.

Price of the Manual, $\$ 3.00$; of the Drawing-Books, 25 cents each.
Where fupils in grammar schools have reccived $n o$ previons instruction in Frreehand Drazoing, the first grading of the instruction in the gramınar schools must be provisional.

THE HIGH SCHOOL COURSE.

This course consists of advanced work in Perspective, Model, and Object Drawing, and Mechanical Drawing, intended to be in large part elective.

In the previous courses, only outline work is attempted, in order that pupils may become well grounded in all the elementary principles of Industrial or Artistic Drawing. When they reach the high school, they are able to take up understandingly the more advanced phases of the study. In the high school, pupils may be allowed some election in their course of study, according to their tastes or inclinations : some may prefer a purely artistic course, and others a mechanical course. Their previous training fits them for either.

The High School Course includes instruction in Shading, Painting, Drawing from Nature, and Designing in Color, and Applied Design.

Bonks for this course are in preparation.

FREEHAND DRAWING FROM FLAT COPIES.

GENERAL DIRECTIONS FOR TEACHER AND PUPIL.

FOR THE TEACHER.

I. You will usually find it best to take personal charge, between lessons, of the drawing-books, pencils, and rubbers. Do not consume, at a lesson, more than one minute ip their distribution or collection.
II. Before the class begin to draw any copy which their books contain, require them to look at it carefully while you give the directions, as set forth in the Manual, for drawing'it. Have them repeat the directions until you are certain they understand the differeht steps to be taken. Occasionally require the chass, before drawing a form, to analyze it, as described in the Manual.
III. See that the whole class work together, as a rule, doing the same thing at the same time. By the aid of the blackboard you can keep all together. But do not spend at the blackboard, on an average, more than one tenth of the time devated to the lesson. Give the other nine tenths to individual instruction.
IV. See that the learner always draws, First, with understanding; Second, with rapidity ; Third, with as much precision as rapid drawing will admit. Do not make fine finish the leading leature; at least, do not sacrifice to this either knowledge or celerity of execution.
V. Blackboard, dictation, and memory lessons, with original design, are leading featores in this course of drawing. It is for these that the blank pages are inserted. For specific directions see the Manual.

FOR THE PUPLL.

To iosure accuracy and to avoid loss of time. proceed thus with ench exercise : First, draw the construction or guide lines, which are usually dotted in the printed copy; Second, sketch the loager lines of the form, or object, and then the shorter ones; Third, line in, that is, finish, the complete form.

> The First Stage.

Drawing the Cuide Lines. - To secure a correct final result you must both accurately place and accurately divide these lines. Do not dot them as in the printed copies, but make them continuous and faint. Do not attempt to draw the form without these lines.

The Second Stage.
SKETCHING THE FORM. - After the guide lines have been drawn, sketch the form ; that is, draw it in light line, the lighter the better, in order that errors may be easily corrected. Turn the book for the detection of errors. The Third Strge.
Lining in. - Erase the guide lincs, and all other lines and parts of lines which are not to appear in the finished drawing ; partly erase the sketch of the form, as it is to appear when lined in, making the lines just visible; clean the paper. The work is now ready for finishing or lining in. The pencil should have a sharp point; and it should be held more nearly upright than in sketching. that the side of the pencil may not touch the paper. Make a firin, bold line, and of the smine thickness throughout, unless there is a difcrence in the copy. General Remarks.
POSITION OF BOOK, - Place the book so that you carmost casily draw the exercise or any part of it. The following will be found the best general rules : for Stage i keep the book square with theedges of the desk, that the horizontal and vertical lines may be the more accurately drawn. For Stnges z and 3 keep the book as far as possible in the same position as in Stage r. By turning the hand and pencil you will frequently avoid the necessity of turning the book.

DRAlving Curves, - For a long, flat curve, make the wrist the centre from which the curve is struck ; draw short, round curves with the fingers alone. See that the curve, when you are drawing it, is concave towards the fingers; if it is convex towards the fingers, then turn the book.
PENCIL, RUBBER, ETC. - Kecp your pencil point in good condition by rubbing it sidewise on a piece of paper. Do not wet the point, lest it make lines too black and difficult to erase. Do not hold the rubber in the hand while you are using the pencil, lest it become moist. Use the rubber sparingly in Stages 1 and 2 . Before beginning Stage 3 you may use it freely, for your drawing should not be spoiled by imperfectly erased faults, Do not measure the drawing without permission of the teacher. Work rapidly, yet always avoid the haste that is heedless. Be patient, inclustrious, careful, persevering, and you will eertainly succeed.

PRINCIPLES OF DESIGN ILLUSTRATED IN THIS BOOK.

I. BEAUTY RESULTING FROM SUBILETY.

I. A subtle proportion is more pleasing than a simple proportion. Thus the proportion 2 to 3 is more plegas. ing than the proportion 1 to 2 ; and 3 to 5 is more pleasin; than 2 to 3 . It is more difficult for the eye to detect a subtle proportion than a simple one. Both the ornament and the form of the object should have a distinct proportion.
2. A subtle curve is more pleasing than a simple curve. Thus an elliptical curve is more beautiful than a circular curve. The character of the latter is more readily cletected by the eye. If the two segments of a reversed curve are parts of a circle, the curve is less beautiful than one whose change of direction is gradual and not all at one point.
3. A tangential union of curves, or of curves and straight lines, is more pleasing than a sceant, abrupt union, In the former case one line blends insensibly into the otlier; but in the latter case the junction is strongly marked. For agreeable effect there must be no abrupt change in the direction of a line.

II. BEAUTY RESULTING FROM ORDERLY ARRANGEMENT

r. Orderly arrangement is secured by symmetrical repet.tion about a centre, as of a circle, a triangle, a square, a pentagon. This form of repetition requires that all parts of the figure having the same relation to the centre should be treated exactly alike. Thus there can be no line without its companions; no superfluous line, as there would be in a disorderly arrangement.
2. Orderly arr.ungement is secured by symmetrical repetition on an axis. This form of repetition requires that there be a perfect balance of parts, that the right-hand side of the figure correspond exactly to the left-hand. A violation of this law of ornament produces always a disagrecable effect.
3. Orcterly arrangement is secured by a regular repetition of the symmetrical unit, or repeat. This repetition may be made horizontally or vertically, as in the case of mouldings on a wall; or it may be made in all directions, as in a design for a carpet or for the decoration of a ceiling. This orderly repetition of an ornament usually gives an increase of beauty, while a disorderly arrangement would be exceedingly disagreeable.

III ADAPTATION OF THE DESIGN TO POSITION.

I. When a design is to be viewed from all sides, as an ormament on a ceiling or a carpet pattern, it should be so constructed that it will always be seen right way up. With symmetrical arrangement about a centre this always happens.
2. When a design is to be viewed from only one side, as in the case of an ornament on the wall of a room, it will be seen right way up, whether the arrangement be around a centre or on an axis, provided the axis is vertical. This position of the axis must be maintained, whether the unit is repeated up and down or right and left.

IV. ADAPTATION OF THE DESIGN TO KATERIAL AND USE.

x. Due regard must always be paid to the material of which the object is to be made, or to which the ornament is to be applied. A design for an object to be made of metal will not necessarily answer for a similar object to be made of clay. If an ornament is to be cut in granite, for example, the lines inust be few ; if en. graved on silver, the ornament may be elaborate.
2. The use to which an object is to be put must be first considered in determining its form. To this form the decoration, if there is any, must be adapted. It should also be in harmony with the use. The form of an object is not to be adapted to its decoration.

Nearly all the designs in this book are geometrical, being combinations of straight and curved lines without an attempt to represent objects, natural or artificial. A few are outline designs for vases, pitchers, and the like, There are no conventional forms. The Manual gives full cxplanation of the principles, and it is expected that the teacher will explain them to his pupils as they ndvance with the drawings. When they have concluded the book, they should be able to give an account of these principles and to illustrate them with original designs.

These forms are on a bold scale, and the curves nere gradual. Make the complete figures as though ail werc printed.

(then Maplo heas to fill an equilateral triangle, squaro, pentagon, or hexagon.

10 The Acanthus Leaf, in one form or another, is more often used for ornament than any other leaf. The Greeks and Romans employed It; the Greek form has sharp or thistly points, the Roman leaf rounced points like the coyy.

12. - Greek Vaso.

12 In Moresque ormament there is no near approach to natural forms. The religion of the Moors, which was Mohammedan, forbade the representation of natural forms, on the ground that such representation would be Idolatrous.

The palace of the Alhambra, in Spain, contains the best examples of Moorish ornament

Copy tho water-pot abovo thls.

How to begin the pitcher. Complete it.

19. - Square rosette. To be completed.

\square
\square

80. - Leaf, flower, and intit of the potato plant.

- Draw the stems of the leaves and flowers first, and in their right places. Complete the leaves and flowers and then add the fruit.

DEFINITIONS.

 connection with the drawing-lessons, The Manual contains much more relating to the same.

1. A PODNT is position only: therefore it has no lengeth, breadeli, or thickness

NOTE. - In drawill, a point is represented by a dot, which has size
11. A LINE has lengrth, but no breadlis or thickness.

Note. - In trawing, a line is represented by a pencil-mark, which has breadth.

1. Ines asmed from their appearance are straight, curved, or broken; continuous or discontinuous.
i. A Siruight hine has the same direction throughout its whole length.
c. A firokes Lime consists of a scries of straight lines united one to the end of another, but haviug d lferent dircetions
e. A Disconimuous Line is a line which is interruptud at intervals; it nay be cither seraight or curved
2. Stralght Lines named from their position are horizontal, vertical, or oblique.

NOTE, The ahsolute position of a line is determined by its relation to the centre of the earth. In drawing, however, the surface on which the line is denwn is also taken into considera-
tion. The surface is usually egarded as an upright plane; and the definitions here given con form to this view.
a. A Hurizonthl Line is a straight line which inclines neither up nor down.

万. A l'erfical Linc is a straight line which extends up and down and does not incline in any direction c. An Obligue Line is a straight line which inclines more or less

NotF., The drawing-book must be regarded as in a vertical position, like the blackboard edge of the book; a vertical line, the same direction as the right-hand edge ; and a straighe fine edrawn in thy other direction is oblique.
3. Ines named from their relation to one another are perpendicular, oblique, or parallel
a. A Perpendiculirr Line. One straigit line is said to be perpendicular to another straight line, when
the two form a riglit anyle. NOTE - When we simply but when we say that it is perpendicular that it is perpendicular, we mean that it is vertical if its position is considered.
8. An Obtique live. One straight line is said to be oblique to another straight line, when the two do
c. Parrillel himes. Two lines, straight or curved, are said to be parallel when they lie side by side
anul have the same direction througliout their whole lengtlo. Note. - Gcometry knows nothiny of lines except in their relation to one anotiser, since it knows nothing of up and down, of right and left.
III. SURFACE. Space eoclosed by lines is called surface; it has, therefore, length and breadth, bu: no
thickness, thickness.

1. A Plane. Surface to all parts of which a rule can be exactly applied, is called a planc.
2. Curved Surface. When a surfoce curves like the outside of a cup it is called convex
like the inside of a cup, it is called concave.
. A solm. Space enclosed by surfaces is called a solid : a solid has iength, breadth, and thickness.

An ANGLE is the difference in direction of two straight lines which meet or only tend towards each other. NOTE, The word angle is often applied to the point where the lines meet, - the vertex of
the angle Duterent angle Diferent Angleg. When two straight lines cross each other so as to form four equal angles, as a ver-
tical and a loorizontal line would, each is called a rivht angle. An acute angle is smaller than a rirht angle; an obeuse angle is larger than a right angle.

NoTE. - The size of an angle depends, not on the length of the lines, but on the difference
in their direction.
VI. A triangle. Any plane surface or figure bounded by three straight lines, or sides, is called a triangle. Different Triangles. A Richt Triangle contains a right angle. An Fquilaterat Triangle has three
equal sides. An lsoscles Triantele has two of its sides equal. A Scalcue Triangie las no two of equal sides. An lsoseches Triangle has two
its sides equal, and contains no right angle.

2 Similar ant Equal Trianglea. Two tringles, or any two plane figures, are said to be simltar, when
they have the samic shape : enual, when they hive the same apea or surface,
An Axis of Symmetry is a linc that divides a thisure into two similar anil equal garts, which butance
each ther without change of position. An isosceles triangle hus one axis of symuctry ; an equilat eral, thres.
VII. A QUADRILATERAL. Any plane surface or figure bounded by four straight sides is called a quadrilateral.

1. A Square has four equal straight sides and four equal angles.
a. A Driancter of a Square is a straight line drawn through the centre of the square, parallel to two

Note. - This line is much used in drawing, and is so calicd for want of a betecr term.
B. A Diagonat of a Square is a straight line connecting opposite angles, or comers of the square
2. Other Quadrilaterals. A Rhombers las four cyual sides, but uncqual angles, All Onfong has four equal anisles, but only its opposite sides are equal A Nihoinbod has ouly npposite sides and oppo
site angles equal. site angles equal.

NoTE. - When a quadriatera! has four right angles, it is sometimes calted a Rectangle; when
it has its opposite sides parallel it is sometines called, a Prrallelogram.
VIII. A POLYGON. Any plane figure boundcd by more zhan four straight sides, and having more than four
angles, is called a polygon, which means having nany angles.

NOTE. If the sides and anyles are cqual, the figure is called a regular polyson ; if they are uncyua, then it is called an irregular polygon, Polygrons have difierent names, as pentagon

1. A Regular Pentagon has five equai straight sides and five equal angles
2. A Regular Hexagon has six cqual straiglit sidea and six equal anyles.

A Regular Octagon has cight equal straiglit sides anil cighe equal angies.
ular Octagon has cight equal straight sides and cight equal angles.
Note, The regular pentagon has five axes of symmetry : the regular hexagoa, six; the
regular octagon, cight.
IX. CURVED LINES and CURVED FIGURES. A line which constantly changes irs direction, and has no three consecutive points in the same straight line, is called a curve; and any figure bounded by such line is called a curved firwre.
r. Circular Curve and Circumference. A circular curve is drawn in one plane and bends equally in all
2. A Circle is a plane figure bounded by a curve, called the circumfercnce, all parts of which are at the same distance from a point within, called the centre.

Note - The word circle is frequebtly used to decoote the circumference as well as the space
enclosed by it.
a. The Ratinus of a Circle is a straight line drawn from the centre to the circumferenec.
o. The Dinmeter of a Circle is a straight line drawn through the centre and touching the circum-
c. OTHER PARTS OF A CIRCLE A Sector is the space included between any part of the circumfer ence and two radii of a circle. A Quairant is the space inclucled between a guarter of the
 A Chord is a straight line connecting the two ends of an arc. A Segment is the space included The Altitude of a Curve is the perpeodicular distance from its base, or chord, to the highest point in the curve
3. An Ellipse is a plane figure bounded by a curve, every point of which is at the same combioed dis-

NOTE - The ellipse is often incorrectly called an oval. In common usage the word ellipse is NOTE - The ellipse is often incorrectly
applied both to the figure and to the curve.
4. An Oval is a plane figure bounded by a curve having the shape of an egg viewed sidewisc.

Note - An oval has one axis of symmerry, its long dianeter. An ellipse has two axes of sym. metry, its long and short d am
divides it into two semicircles.
5. A Reversed Curve is a curve that reverses its direction; it really consists of two curves.
6. Abstract Curvea are curves so combincd that they represent nothing creased, natural or artificial.

A plane Spiral is a curved line produced by the revolutinn of one point about another, the distance
between the two poines constantly increasing according to sorne law.
NOTE, - Curves which have clearly defined and constane featires, like the circle, ellipse, and
spiral, are called mathematical curves; all others, like the oval and rcversed curves, which have not such features, are sometimes called liam-curves.

A SYSTEM OF INDUSTRIAL AND ARTISTIC DRAWING FOR PUBLIC SCHOOLS
 PREPARED BY PROF. WALTER SMITH,

State Director of Art Education for Massachusetts, General Supervisor of Drawing in the Boston Public Schools, and Director of the Massachusetts Normal Art School.

This is the only comprehensive system of instruction in drawing available for American schools. The instruction is so graded as to meet the wants of every grade of pupits, from the lowest primary class to the most advanced class of the high school. The system comprises

A Primary Course,
 A Grammar Course,
 An Intermediate Course, A High School Course.

THE PRIMARY COURSE.

This course consists of a Manual for the use of teachers, in which the simple elements of the study are explained and illustrated by the most familiar terms and examples; and two series of Cards, containing exercises for pupils to draw on their slates. It explains and illustrates the simpler principles of both geometrical and conventional design.

Price of the Manuat, $\$ \mathrm{I} .00$; of the Cards, 15 cents each set.

THE INTERMEDIATE COURSE.

This course consists of three small Drawing-Books, of twenty pages each, specially arranged for pupils when they begin to draw on paper. The exercises illustrate principles of Design and Style, and drawing from Models and Objects. This course also contains a Manual for Teachers.

Price of the Manual, $\$ \mathrm{r} .25$; of the Drawing-Books, 15 cents each.

THE GRAMMAR COURSE.

This course consists of : -
First. Four Books in Freehand Outline Drawing from Flat Copies, and Design. The exercises are more advanced than those in the Intermediate Course; and by a wide variety of conventional, and natural forms, and representations of historical ormament, pupils are taught a great deal about the decorative art of past ages, and also about the general principles of good Design and the special features of the Classic Styles.
Second. Four Books in Geometrical Drawing, with Instruments. These books form the basis for Perspective, Model and Object, and Mechanical

Drawing. The exercises consist of problems in Plane Geometry, the working of which teaches pupils the exact meaning of words and terms. By the care required to execute the problems they are trained to accuracy of workmanship.
Third. Two Books in Model and Object Drawing, Freehand. The exercises in these books are all in outline; and pupils are taught in a thorough manner how to draw from objects. The exercises in these as in all the other books are of such a character, that the pupil's taste will be cultivated while he is acquiring skill in drawing.
Fourth. Two Books in Perspective Drawing, with Instruments. These books teach thoroughly the elements of Parallel and Angular Perspective.
This course is accompanied by a Manual for Teachers, containing all the exercises in the bouks, and many more besides, with a full explanation of methods and principles.

Price of the Manual, $\$ 3.00$; of the Drawing-Books, 25 cents each.
Where pupils in grammar schools have reccived no previous instruction in Freehand Drazving, the first grading of the instructions in the grammar schools must be provisional.

THE HIGH SCHOOL COURSE.

This course consists of advanced work in Perspective, Model, and Object Drawing, and Mechanical Drawing, intended to be in large part elective.

In the previous courses, only outline work is attempted, in order that pupils may become well grounded in all the elementary principles of Industrial or Artistic Drawing. When they reach the high school, they are able to take up understandingly the more advanced phases of the study. In the high school, pupils may be allowed some election in their course of study, according to their tastes or inclinations: some may prefer a purely artistic course, and others a mechanical course. Their previous training fits them for either.

The High School Course includes instruction in Shading, Painting, Drawing from Nature, and Designing in Color, and Applied Design.

Books for this course are in preparation.

MODEL AND OBJECT

GENERAL DIRECTIONS FOR TEACHER AND PUPIL.

FOR THE TEACHER.

1. You will usually find it best to take personal charge, between lessons, of the drawing-books, pencils, and rubbers. Do not consume, at a lesson, more than one minute in their distribution or collection.
II. See that each pupil, before he begins to draw, has a clear knowledge of the principles to be illustrated by the lesson.
III. Before the class begin to draw any copy which their books contain, require them to look at it carcfully while you give the directions, as set forth in the Manual, for drawing it. Have them repeat the directions until you are certain they understand the different steps to be taken. Occasiondlly require the class, before drawing a form, to analyze it, as described in the Manual
IV. See that the whole class work together, as a rule, doing the same thing at the same time. By the aid of the blackboard you can keep all together. But do not spend at the blackboard, on an average, more than one tenth of the time devoted to the lesson. Give the other nine tenths to individual instruction.
V. See that the learner always draws, First, with understanding; Secontd, with rapidity; Third, with as much precision as rapid drawing will adinit. Do not make fine finish the leading feature; at least, do not sacrifice to this either knowledge or celerity of execution.
VI. Have the blank pages filled with drawings made from the actual solid or object. For specific directions see the Manual.

Hzes: FOR THE POPIL.
To insure accuracy and to avoid loss of time, proceed thus with each exercise : First, draw the construction or guide lines, which are usually dotted in the printed copy; Second, sketch the longer lines of the form, or object, and then the shorter ones; Third, line in, that is, finish, the complcte form.

The First Stage.

DRAWING THE GUIDE LINES. - To secure a correct final result you must both accurately place and accurately divide these lines. Do not dot them as in the printed copies, but make them continuous and faint. Do not attempt to draw the form without these lines.

The Second Stage.
SKETCHING THE FORM. - After the guide lines have been drawn, sketch the form ; that is, draw it in light lioe, the lighter the better, in order that errors may be easily corrected. Turn the book for the detection of errors. The Third Stage.
Lining in. - Erase the guide lines, and all other lines and parts of lines which are not to appear in the finished drawing ; partly erase the sketch of the form, as it is to appear when lined in, making the lines just visible ; clean the paper. The work is now ready for finishing or lining in. The pencil should have a sharp point; and it should be held more nearly upright than in sketching, that the side of the pencil may not touch the paper. Make a firm, bold line, and of the same thickness throughout, unless there is a diference in the copy.
General Remarke.

POSITION OF BOOK, - Place the book so that you can most easily draw the exerclse or any part of it. The following will be found the best general rules: for Stage a keep the book square with the edges of the desk, that the horizontal and vertical lines may be the more accurately drawn. For Stages 2 and 3 keep the book as far as possible in the same position as ind Stage x. By turning the hand and pencil you will frequently avoid the necessity of turning the book.
Drawing Curves. - For a long, flat curve, make the wrist the centre from which the curve is struck ; draw short, round curves with the fingers alone. See that the curve, when you are drawing it, is concave towards the fingers; if it is convex towards the fingers, then turn the book.
PENCIL, RUBBER, ETC. - Keep your pencil point in good condition by rubbing it sidewise on a piece of paper. Do not wet the point, lest it make lines too black and difficult to erase. Do not hold the rubber in the hand while you are using the pencil, lest it become moist. Use the rubber sparingly in Stages I and 2 . Before beginning Stage 3 you may use it freely, for your drawing should not be spoiled by imperfectly erased faults. Do not measure the drawing without permission of the teacher.

DRAWING: FREEHAND.

GEOMETRICAL SOLIDS DEFINED AND DESCRIBED.
THE definitions which follow grow out of the definitions previously given for plane geometrical fgures.

1. Surface. - Surface has two dimensions, -iength and breadth. It is usually bounded by lines, but i sometimes endless.

II. A SoIid. - A solid has three dimensions,-length, breadth, and thickness. It bounded by one or more surfaces.

NOTE. - Of course, the term " solid," as used io these definitions, has no reference t hardness, but simply to space, - to volume.
III. A Sphere. - The solid described by the revolution of a circle about its diameter

Cone.

 called a sphere.

NOTE - A sphere is bounded by one endless curved surface; that is, by a surface un limited by lines. Every point of this surface is at the same distance from a point withir called the centre of the sphere.
IV. A Cone. - The solid described by revolving a right triangle about its perpendiculas is called a cone.

Cytinder.

NOTE. - The top of the cone is called the apex ; the bottom, the base. A straight line from the centre of the base to the apex is called the axis of the cone.
V. A Cylinder. - The solid described by the revolution of a rectangular plane about one of its sides is called a cylinder.

NOTE - If a door could swing entirely around on its hinges, it would describe a cylinder. A straight line joining the centres of the ends is called the axis of the cylinder.
VI. A Cabe. - A solid bounded by six square planes is called a cube.
VII. A Parallelopipedon, - A solid bounded by four equal rectangular oblong planes and by two equal square planes is called a parallelopipedon.

Note. - It will be seen that much of what may be said of the cube can be said of this solid.
VII. A Square Plinth - A section of a rectangular prism or parallelopipedon is called a square plinth.

All the gcometrical solids the pupil will have occasion to draw in this book have now been definc.

Parallelopifedon

EXERCISE I.-Circle, Ellipse, Cone, and Cylinder.

 of the circle and of the cllipse. Draw them arst and add thic curves.

Fig. ${ }^{5}$. -Greels Vass.

Fig. 6. - Greek Tazza

Fig. 7. -Greet Vase.
EXERCISE VI. - Vases to be completed.
Fiss. 8, 9 , and ro. GREEK VASES. - The exercises on this page are to teach the drawir board that the ellipses should always be tangential to the profle, not cutting across it

Fig. 13. - Cabe.

Fig. 14. -Cabe.

Fig. 15. - Oblong Block.

FIg. 17. -Box .

Fig. 19. - Ewer and Cube.

EXERCISE XIV.-Cone, Cylinder, and Square Plinth corabined.

Fis. 20. - Cone, Cyluder, and Square Plinth.
 nearer together, and also the lines L N and M Q .

Fig. 21. EARTHENware MUG. - Draw the lines $12,34,56$ in the order given, and the straight cutlines between 35 and 46 . When the body of the mug and ellipses on it are right, draw the handle

Fig. 21-Earthenware Mug.

Fig. 21.-Earthenware Fitcher.
Follow the order of the numerals. Make the two sides of the neck and body of the pitcher symmetrical first, and then add the spout and handie,

Fig. 23. SILVER MUG AND SQUARE BLOCK. - The elliptical top and botom, and the straight sides of the mug to be first drawn, and then the square block on which it stands; lastly the handie of the mug.

 drawing be on a large scale, to fill the page. The book should be about twice the width of the seucer, and about half as thick as the teacup is high

ELEMENTARY PRINCIPLES TO BE TAUGHT AND OBSERVED IN MODEL AND OBJECT DRAWING: FREEHAND.

Model and Object Drawing is the freehand representation of individual oljects as they appear to the eye when looking at the solid or natural form. In model drawing the pupil must be taught to look for the geometric basis of forms, regular or irregular. It is well, therefore, to begin with the drawing of the geometric solids which will form the first exercises. In this book they are: 1. The cone; 2. The cylinder; 3. The cube; 4. The parallelopipedon, or oblong block; 5. The square plinth. All the other forms in the book are irregular variations from these.

These solids should be shown to the pupils and their characteristics explained before they are drawn, the teacher illustrating the definitions by ample illustrative sketches on the board.

RULES TO BE OBSERVED.

I. A circle seen oblique to the plane of its surface appears an ellipse.
II. Parallel lines retreating from the eye appear to converge.

These principles, understood and complied with, will enable the pupil to approximate to accurate work.

Let the teacher revolve the cone with its axis in a vertical plane, and with the base more or less oblique to the views of the pupils, to show the different ellipses which the same circle may become apparently. In drawing the cone and cylinder, remember that the long diameters of their bases will always be perpendicular to their axes.

In drawing the rectangular solids remember that
I. Vertical lines are always drawn vertical, and therefore parallel.
II. Two equal lines running in the same direction but at unequal distances from the eye will appear unequal in proportion to their distances from the eye, the farthest being the shortest.
111. Horizontal lines above the level of the eye, and retreating from it appear to point downwards; if below the level of the cye, they appear to point upwards, and must be so drawn.
IV. If any two points in a horizontal line (or the line produced) are at equal distances from the eye, the liue must be drawn horizontally.

MEASURING THE SOLID.

The larger proportions, as of width to height, in a solid form may be approximately measured by use of the pencil or scale, held at the full extent of the arm's reach, in this way: if the form be a cylinder, hold the pencil between the thumb and first finger horizontally, and as far as the arm will reach, observing how much of the pencil is taken by the width of the cylinder; with the arm and eye in the same position, measure how many times the width can be measured up the height, from the base uprards. If it measures twice, then the cylinder will be in height twice its width.

But the larger proportions of a solid or natural object having been settled, the smaller ones must be judged by the eye, these being compared with dimensions already determined. In drawing the circle, seen as an ellipse, the shorter diameter should be measured along the longer, to see the proportion of the two, and these proportions must be kept in the drawing.

Practice only will enable the pupil to make these measurements truly, but all pupils should be taught to observe the comparative sizes of different parts of an object, and try to express this difference in their drawings. Let the first direction to a class commencing to draw from the solid be, "Compare the width with the height; which is the greater?" and this being determined rightly, proceed with minor characteristics.

A SYSTEM OF INDUSTRIAL AND ARTISTIC DRAWING FOR PUBLIC SCHOOLS.

PREPARED BY PROF, WALTER SMITH,

State Director of Art Education for Massachusetts, General Supervisor of Drawing in the Boston Public Schools, and Director of the Massachusetts Normal Art School.

THIS is the only comprehensive system of instruction in drawing available for American schools. The instruction is so graded as to meet the wants of every grade of pupils, from the lowest primary class to the most advanced class of the high school. The system comprises

A Primary Course,
 A Grammar Course,
 An Intermediate Course, A High School Course.

THE PRIMARY COURSE.

This course consists of a Manual for the use of teachers, in which the simple elements of the study are explained and illustrated by the most familiar terms and examples; and two series of Cards, containing exercises for pupils to draw on their slates. It explains and illustrates the simpler principles of both geometrical and conventional design.

Price of the Manual, $\$ 1.00$; of the Cards, \mathbf{x} cents each set.

THE INTERMEDIATE COURSE.

This course consists of three small Drawing-Books, of twenty pages each, specially arranged for pupils when they begin to draw on paper. The exercises illustrate principles of Design and Style, and drawing from Models and Objects.

This course also contains a Manual for Teachers.
Price of the Manual, \$1.25; of the Drawing-Books, 15 cents each.

THE GRAMMAR COURSE.

This course consists of:-
First. Four Books in Freehand Outline Drawing from Flat Copies, and Design. The exercises are more advanced than those in the Intermediate Course ; and by a wide variety of conventional, and natural forms, and representations of historical ornament, pupils are taught a great deal about the decorative art of past ages, and also about the general principles of good Design and the special features of the Classic Styles.
Second. Four Books in Geometrical Drawing, with Instruments. These books form the basis for Perspective, Model and Object, and Mechanical

Drawing. The exercises consist of problems in Plane Geometry, the working of which teaches pupils the exact meaning of words and terms. By the care required to execute the problems they are trained to accuracy of worlmanship.
Third. Two Books in Model and Object Drawing, Freehand. The exercises in these books are all in outline; and pupils are taught in a thorough manner how to draw from objects. The exercises in these as in all the other books are of such a character, that the pupil's taste will be cultivated while he is acquiring skill in drawing.
Fourtir. Two Books in Perspective Drawing, with Instruments. These books teach thoroughly the elements of Parallel and Angular Perspective.
This course is accompanied by a Manual for Teachers, con.taining all the exercises in the books, and many more besides, with a full explanation of methods and principles.

Price of the Manual, $\$ 3.00$; of the Drawing-Books, 25 cents each.
Where pupils in grammar schools have reccived no previous instruction in Freehand Draving, the first grading of the instruction in the grammar schools must be provisional.

THE HIGH SCHOOL COURSE.

This course consists of advanced work in Perspective, Model, and Object Drawing, and Mechanical Drawing, intended to be in large part elective.

In the previous courses, only outline work is attempted, in order that pupils may become well grounded in all the elementary principles of Industrial or Artistic Drawing. When they reach the high school, they are able to take up understandingly the more advanced phases of the study. In the high school, pupils may be allowed some election in their course of study, according to their tastes or inclinations: some may prefer a purely artistic course, and others a mechanical course. Their previous training fits them for either.

The High' School Course includes instruction in Shading, Painting, Drawing from Nature, and Designing in Color, and Applied Design.

Books for this course are in preparation.

$$
x
$$

